
CADENCE CONFIDENTIAL

The Reality of System Design Today:
Do Theory and Practice Meet?

Grant Martin
Fellow, Cadence Berkeley Labs
ACSD, Portugal, 18 June 2003: 0900-1000

2

Point of view

• The history of system-level design as a viable commercial concern for
the EDA tools industry is littered with false starts:

– ESDA: Electronic System Design Automation

– Behavioural synthesis

– ESL: Electronic System-Level design

• In 2003, EDA is continuing to shrink its focus to primarily physically-
related SoC design problems at 130-90-sub-90 nm processes.

• Yet many embedded systems today present profound problems of
specification, design and verification:

– Wireless and wired communications terminals and infrastructure

– Multimedia consumer devices

– Large complex systems

3

Point of view, continued

• Is the problem one of:

– The system design community is too small and diverse, thus making a
commercial marketplace for tools permanently unviable?

– Have we espoused incorrect theories about how these systems should be
designed and verified?

– Have we been premature in trying to ‘industrialise’ system-level design?

– Have we been looking in the wrong place for a large enough community of
designers with compelling problems which can be solved on a commercial
basis?

– Or a combination of all of the above…….?

• We will examine a number of issues in this talk

4

Outline

• SoC and System Level Design

• Key Requirements

• An existential view of HW-SW Codesign

• Algorithmic Design and Implementation

• Modelling and Design of SoCs

• System Virtual Prototypes of SoCs for ESW

• What about Behavioural Synthesis?

• New SoC Architectures

• Conclusion

5

SoC
• “System” is more important than “Chip”

• Today’s chipset = tomorrow’s chip or SiP

• The system must be designed as an entity with tradeoffs across
boundaries: HW-SW, analogue-digital, chip-package-board

System-Level Design:

• Always tomorrow’s methodology

• EDA’s focus is shrinking to IC Physical design

• SoC may be the best place to see system design applied

Concurrency:
• Most interesting embedded systems are fairly concurrent and becoming

more so:
– Multiple threads of control

– Multiple dataflow processing streams

– Multiple RISC + DSP (1+1 ⇒ n+m)

– But designers are afraid of concurrency at the system level

6

Key SoC/System Level Design
Requirements

• Algorithmic design and implementation

• Modelling of SoCs and SoC platforms at the system level

– Integration of SoC and configuration of designs

– Build a platform model and verify HW-SW interfaces

– Performance analysis and Design Space Exploration

• “System Virtual Prototypes” for embedded SW:

– Hardware-dependent SW (HdS)

– ESW application development

7

SoC Platforms

Application
Space

HW-SW Kernel

MEM

FPGA
CPU Processor(s), RTOS(es)

and SW architecture

*IP can be hardware (digital
or analogue) or software.
IP can be hard, soft or
‘firm’ (HW), source or
object (SW)

*IP can be hardware (digital
or analogue) or software.
IP can be hard, soft or
‘firm’ (HW), source or
object (SW)

Scaleable
bus, test, power, IO,
clock, timing architectures

+ Reference Design

Programmable

SW IP

Hardware IP

Pre-Qualified/Verified
Foundation-IP*

Foundry-Specific
HW Qualification

Reconfigurable Hardware Region
(FPGA, LPGA, …)

SW architecture
characterisation

8

An existential view of HW-SW Codesign

• Does it exist?....i.e. as a delayed implementation choice

• Tradeoffs of HW vs. SW – not very relevant for most designs

– Legacy: most tradeoffs are known or dead obvious

– Processors are changed only very rarely

– The SW legacy is enormous

– Specifications easily drive an obvious choice of HW implementation when
needed

• More relevant?

– “SW-SW Co-Design” – mapping functions to multiple programmable or
configurable computation and communications resources

– Obvious need for concurrency-based design methods and tools!

9

Algorithmic Design and Implementation

• Design and Implementation of complex control and dataflow
algorithms in HW, SW or a combination

• Today’s best practices use system level design tools

• Well established for many years

– Dataflow is better handled than mixes of dataflow and control

• Used both for less integrated systems as well as SoC

10

Dataflow algorithms

• Classic and well-established tools exist

– Mathworks: Matlab, Simulink

– Cadence: SPW

– Research: Ptolemy I/II

– Synopsys: COSSAP/CoCentric System Studio

11

A Dataflow tool example

12

A Dataflow Tool: Interactive Simulation

13

Bit Error Rate Analysis

14

Control algorithm capture and analysis

• State Machine capture and simulation

– Links to HW and SW generation

• A possible place for adapting SW development flows into the
system space

– SDL, UML

– Statecharts, state diagrams, message sequence charts

– Esterel

– Synchronous Reactive systems

15

Modelling and Design of SoCs and their
architectures

• Capturing SoC architecture and providing SoC configurators

• SoC model integration and developing verification models

– Especially HW/SW integration models

– “Golden models” for implementation verification

• Design Space Exploration

16

SoC Configurators – Example: Altera SOPC
Builder

Source:
Altera web

site
www.altera.

com

17

SoC Model Integration: SystemC

Source: Jon Connell, ARM: DAC 2002 Open System C Meeting: “Platform Modelling for System Design Using SystemC”

18

Design Space Exploration - example
map_FAKIR_Diagrams.MPEG_VIPER_S1

YAPI Transactions - Write - Number of bytes per channel per frame

0,00E+00

5,00E+05

1,00E+06

1,50E+06

2,00E+06

2,50E+06

3,00E+06

3,50E+06

4,00E+06

1 3 5 7 9 11 13 15 17 19 21 23 25

frameID

nb
By

te

2
4
6
8
9
10
11
14
15
17
18
20
21
22
23
26
30
32
34
35
36
37
40

19

System Virtual Prototypes of SoCs for
ESW

• Hardware-dependent SW developers

– Need cycle and phase accuracy, bit-level precision

• Applications SW developers

– Need functional correctness and fast execution

20

A Scenario for Embedded Systems

Systems

Architects

HdS SW

Designers

HW

Designers

System Platform API
Platform Abstraction:

Link between the communities

HdS API

HdS Spec

Applications SW

Designers

21

System Level Virtual Prototypes
• Develop HdS Models of your HW-SW platform

– Using, for example, SystemC

– SystemC 2.0 adds abstract communications modelling
– SystemC 3.0 will add abstract RTOS modeling

– Scheduling, communications services

• Use SystemC (2.0-3.0) as a simulation and analysis “Backbone”
for analysing the complete HW-SW embedded system
– An interoperable, Integration, Infrastructure

• Back-annotate the results INTO the SW developer’s
development environment via fast-execution, functional System
Virtual Prototypes
– SW modeling tools

– UML, SDL, …
– SW Integrated Development Environments

22

What about Behavioural Synthesis?

• Not been a major success for commercial tools

– Quality of results uncompetitive with general RTL synthesis

• Used in specialised contexts

– E.g. dataflow algorithm to implementation

• May resurface via SW implementation optimisation to
processor+HW combination

– Emerging “co-processor synthesis”

23

Compile to SW+HW: The Proceler Example

Source: Proceler Web Site www.proceler.com

(Now Unfortunately Defunct)

24

From the defunct to the emergent:
Co-processor Synthesis - CriticalBlue

Source: CriticalBlue Web Site http://www.criticalblue.com/technology3.htm

25

New SoC Architectures
• A ‘sea’ of Flexible, configurable computational resources

• Using flexible, configurable, on-chip communications networks

• New architectures require new thinking

• This may be the real opportunity for system-level design

• But it may come with a real SW focus

• Current interest in compiling SW models to processor+accellerating HW
(often using reconfigurable logic)

• Obvious need here for Methods and Tools involving concurrency!

– Mapping computation to sea of resources

– Optimising configuration

– Mapping communications to network

– Making sure it all works together harmoniously

26

The Software Washing Machine

Source: Hugo De Man, DATE 2002 Keynote: “On Nanoscale Integration and Gigascale Complexity in the post .COM World”

27

Networks of Adaptive Computing

Source: Hugo De Man, DATE 2002 Keynote: “On Nanoscale Integration and Gigascale Complexity in the post .COM World”

28

The Mapping Problem

Source: Hugo De Man, DATE 2002 Keynote: “On Nanoscale Integration and Gigascale Complexity in the post .COM World”

29

Conclusion

• Is this just a SW problem?

• Will systems design = SW design and implementation?

• Why should a system designer care about HW at all?

– Except inasmuch that it gives him or her choices about
implementation tradeoffs

– This is a job for a compiler with optimisation options

• What are the implications for the research community?

– Can advanced tools and methods overcome designers fear of
concurrency?

– Can we also unify the HW and SW design community into a new
one: system designers who, armed with the right tools, boldly,
reliably and quickly can implement highly concurrent applications on
networks of configurable processors?

