cadence|

The Reality of System Design Today:
Do Theory and Practice Meet?

Grant Martin

Fellow, Cadence Berkeley Labs
ACSD, Portugal, 18 June 2003: 0900-1000




Point of view

* The history of system-level design as a viable commercial concern for
the EDA tools industry is littered with false starts:

— ESDA: Electronic System Design Automation
— Behavioural synthesis

— ESL: Electronic System-Level design

 In 2003, EDA is continuing to shrink its focus to primarily physically-
related SoC design problems at 130-90-sub-90 nm processes.

* Yet many embedded systems today present profound problems of
specification, design and verification:

— Wireless and wired communications terminals and infrastructure
— Multimedia consumer devices

— Large complex systems



Point of view, continued

e |s the problem one of:

— The system design community is too small and diverse, thus making a
commercial marketplace for tools permanently unviable?

— Have we espoused incorrect theories about how these systems should be
designed and verified?

— Have we been premature in trying to ‘industrialise’ system-level design?

— Have we been looking in the wrong place for a large enough community of
designers with compelling problems which can be solved on a commercial
basis?

— Or a combination of all of the above....... ?

o We will examine a number of issues in this talk




Outline

» SOC and System Level Design

« Key Requirements

» An existential view of HW-SW Codesign
 Algorithmic Design and Implementation

e Modelling and Design of SoCs

» System Virtual Prototypes of SoCs for ESW
* What about Behavioural Synthesis?

* New SoC Architectures

e Conclusion




50C

» “System” is more important than “Chip”

e Today’s chipset = tomorrow’s chip or SiP

 The system must be designed as an entity with tradeoffs across
boundaries: HW-SW, analogue-digital, chip-package-board

System-Level Design:

» Always tomorrow’s methodology

* EDA'’s focus is shrinking to IC Physical design

 SOC may be the best place to see system design applied

Concurrency:

* Most interesting embedded systems are fairly concurrent and becoming
more So:

— Multiple threads of control
— Multiple dataflow processing streams

— Multiple RISC + DSP (1+1 P n+m)
— But designers are afraid of concurrency at the system level



Key SoC/System Level Design
Requirements

» Algorithmic design and implementation

» Modelling of SoCs and SoC platforms at the system level
— Integration of SoC and configuration of designs
— Build a platform model and verify HW-SW interfaces
— Performance analysis and Design Space Exploration
» “System Virtual Prototypes” for embedded SW:
— Hardware-dependent SW (HdS)

— ESW application development




SoC Platforms
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An existential view of HW-SW Codesign

» Does it exist?....1.e. as a delayed implementation choice
» Tradeoffs of HW vs. SW — not very relevant for most designs

— Legacy:. most tradeoffs are known or dead obvious
— Processors are changed only very rarely
— The SW legacy is enormous

— Specifications easily drive an obvious choice of HW implementation when
needed

» More relevant?

— “SW-SW Co-Design” — mapping functions to multiple programmable or
configurable computation and communications resources

— Obvious need for concurrency-based design methods and tools!




Algorithmic Design and Implementation

* Design and Implementation of complex control and dataflow
algorithms in HW, SW or a combination

e Today’s best practices use system level design tools

» Well established for many years

— Dataflow Is better handled than mixes of dataflow and control

» Used both for less integrated systems as well as SoC




Dataflow algorithms

e Classic and well-established tools exist
— Mathworks: Matlab, Simulink
— Cadence: SPW

— Research: Ptolemy /1l

— Synopsys:. COSSAP/CoCentric System Studio




A Dataflow tool example
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Equalizer Tap Attrs <17 ,3,t>

A Dataflow Tool:

Interactive Simulation
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BIt Error Rate Analysis
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Control algorithm capture and analysis

« State Machine capture and simulation
— Links to HW and SW generation

A possible place for adapting SW development flows into the
system space

— SDL, UML
— Statecharts, state diagrams, message sequence charts

— Esterel

— Synchronous Reactive systems




Modelling and Design of SoCs and their
architectures

e Capturing SoC architecture and providing SoC configurators
« SOC model integration and developing verification models

— Especially HW/SW integration models

— “Golden models” for implementation verification

* Design Space Exploration




0C Conrigurators — exampie: Altera SOPC
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SoC Model Integration: SystemC

Platform design problem
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Jesign Space Exploration - example
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System Virtual Prototypes of SoCs for
ESW

 Hardware-dependent SW developers

— Need cycle and phase accuracy, bit-level precision
» Applications SW developers

— Need functional correctness and fast execution
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System Level Virtual Prototypes

»  Develop HAS Models of your HW-SW platform
— Using, for example, SystemC
— SystemC 2.0 adds abstract communications modelling
— SystemC 3.0 will add abstract RTOS modeling
— Scheduling, communications services

»  Use SystemC (2.0-3.0) as a simulation and analysis “Backbone”
for analysing the complete HW-SW embedded system

— An interoperable, Integration, Infrastructure

» Back-annotate the results INTO the SW developer’s
development environment via fast-execution, functional System
Virtual Prototypes

— SW modeling tools
— UML, SDL, ...
— SW Integrated Development Environments



What about Behavioural Synthesis?

* Not been a major success for commercial tools

— Quality of results uncompetitive with general RTL synthesis
« Used in specialised contexts

— E.g. dataflow algorithm to implementation

* May resurface via SW implementation optimisation to
processor+HW combination

— Emerging “co-processor synthesis”




.ompile to SW+HW: The Proceler example

Source: Procdler Web Site  www.proceler.com

(Now Unfortunately Defunct)




From the defunct to the emergent:
Co-processor Synthesis - CriticalBlue
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New SoC Architectures

A ‘sea’ of Flexible, configurable computational resources

» Using flexible, configurable, on-chip communications networks
* New architectures require new thinking

* This may be the real opportunity for system-level design

« But it may come with a real SW focus

« Current interest in compiling SW models to processor+accellerating HW
(often using reconfigurable logic)

* Obvious need here for Methods and Tools involving concurrency!

— Mapping computation to sea of resources
— Optimising configuration
— Mapping communications to network

— Making sure it all works together harmoniously



e Software Washing Machine

Software Washing Machine [catthoor, IMEC]

Target independent source to source transformations
for data-intensive applications save power!

IN: Dirty C++ software IP’s + scenario

OUT: Cleaned Concurrent C++ tasks OUT (SYSTEMC)

Platform specific compiler

— © H.De Man/IMEC DATEO2




letworks of Adaptive Computing

Networked Adaptive Computing
Machines

Subnetworks for compute intense concurrent tasks (brain zones)
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The Mapping Problem

Challenge#2: The devil is in the software
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Conclusion

e Is this just a SW problem?
» Will systems design = SW design and implementation?

* Why should a system designer care about HW at all?

— Except inasmuch that it gives him or her choices about
Implementation tradeoffs

— This is a job for a compiler with optimisation options
* What are the implications for the research community?

— Can advanced tools and methods overcome designers fear of
concurrency?

— Can we also unify the HW and SW design community into a new
one: system designers who, armed with the right tools, boldly,
reliably and quickly can implement highly concurrent applications on
networks of configurable processors?



