cadence|

The Reality of System Design Today:
Do Theory and Practice Meet?

Grant Martin

Fellow, Cadence Berkeley Labs
ACSD, Portugal, 18 June 2003: 0900-1000

Point of view

* The history of system-level design as a viable commercial concern for
the EDA tools industry is littered with false starts:

— ESDA: Electronic System Design Automation
— Behavioural synthesis

— ESL: Electronic System-Level design

 In 2003, EDA is continuing to shrink its focus to primarily physically-
related SoC design problems at 130-90-sub-90 nm processes.

* Yet many embedded systems today present profound problems of
specification, design and verification:

— Wireless and wired communications terminals and infrastructure
— Multimedia consumer devices

— Large complex systems

Point of view, continued

e |s the problem one of:

— The system design community is too small and diverse, thus making a
commercial marketplace for tools permanently unviable?

— Have we espoused incorrect theories about how these systems should be
designed and verified?

— Have we been premature in trying to ‘industrialise’ system-level design?

— Have we been looking in the wrong place for a large enough community of
designers with compelling problems which can be solved on a commercial
basis?

— Or a combination of all of the above....... ?

o We will examine a number of issues in this talk

Outline

» SOC and System Level Design

« Key Requirements

» An existential view of HW-SW Codesign
 Algorithmic Design and Implementation

e Modelling and Design of SoCs

» System Virtual Prototypes of SoCs for ESW
* What about Behavioural Synthesis?

* New SoC Architectures

e Conclusion

50C

» “System” is more important than “Chip”

e Today’s chipset = tomorrow’s chip or SiP

 The system must be designed as an entity with tradeoffs across
boundaries: HW-SW, analogue-digital, chip-package-board

System-Level Design:

» Always tomorrow’s methodology

* EDA'’s focus is shrinking to IC Physical design

 SOC may be the best place to see system design applied

Concurrency:

* Most interesting embedded systems are fairly concurrent and becoming
more So:

— Multiple threads of control
— Multiple dataflow processing streams

— Multiple RISC + DSP (1+1 P n+m)
— But designers are afraid of concurrency at the system level

Key SoC/System Level Design
Requirements

» Algorithmic design and implementation

» Modelling of SoCs and SoC platforms at the system level
— Integration of SoC and configuration of designs
— Build a platform model and verify HW-SW interfaces
— Performance analysis and Design Space Exploration
» “System Virtual Prototypes” for embedded SW:
— Hardware-dependent SW (HdS)

— ESW application development

SoC Platforms

Third international conference
on application of concurrency
to system design

Pre-Qualified/Verified HW-SW Kernel + Reference Design
Foundation-IP*
Scaleable

" — bus, test, power, 10,

> r clock, timing architectures
—_I_|
B Hardware IP
L]

7 SWAIP

L]

Rrogrammable

*IP can be hardware (digital

or analogue) or software. Foundry-Specific ~ SW architecture
IP can be hard, soft or HW Qualification characterisation
‘firm’ (HW), source or

object (SW)

An existential view of HW-SW Codesign

» Does it exist?....1.e. as a delayed implementation choice
» Tradeoffs of HW vs. SW — not very relevant for most designs

— Legacy:. most tradeoffs are known or dead obvious
— Processors are changed only very rarely
— The SW legacy is enormous

— Specifications easily drive an obvious choice of HW implementation when
needed

» More relevant?

— “SW-SW Co-Design” — mapping functions to multiple programmable or
configurable computation and communications resources

— Obvious need for concurrency-based design methods and tools!

Algorithmic Design and Implementation

* Design and Implementation of complex control and dataflow
algorithms in HW, SW or a combination

e Today’s best practices use system level design tools

» Well established for many years

— Dataflow Is better handled than mixes of dataflow and control

» Used both for less integrated systems as well as SoC

Dataflow algorithms

e Classic and well-established tools exist
— Mathworks: Matlab, Simulink
— Cadence: SPW

— Research: Ptolemy /1l

— Synopsys:. COSSAP/CoCentric System Studio

A Dataflow tool example

E 802.11a DETHOGOMAL FEEWUENLCY DIUISTON MULTIPLEAIMG COFDM)

STSTEM IM & BH=

ErkD

IH PRRAMETERE1
Data Rate [FEpE]
F20OU lengih
EbsMHE | dE]
Deacding
Channsl

i) =pread Tnal

Hult=r af pathe
Fading ouer pmkrix

[dla synbols [>11]
HEF PARAMETERS (EDITAHELE %
Tina windaoHing

Example node

WITH IDEAL AMO PRACTICAL RECEIVERS

LHED]ITFELE PARAMETEREN
SERVICE bl1s
THIL bite
FAD olt=
Daia bite
Modu 13t T on
Coding rats
N_EFIC /————
H_CBPS ————

N_DAFS —————y
Hunbar oF OFCFM =ynbal=

SHR [OB]

]

FREG
|
OFF3ET

COHPLEX

FRCATICAL RECEILER PRRAMETERS:
Tups Df racalver
Channel estimalian
Frejlency offsel [EHZ]
Frequenoy ofFfeed compenzation
RAS phase nolse [da]]
Pha== noia= bandwidth (3dB)
Carrler phass corractlon
PA modsl

Stop pondition
Wumssr- of errors to Stop

rFpar1
Conpression

Foint
RF =ys1am Inpul ==3la
RF =g=iam cutput =cals

dbwn 1

F’HRHLFIhETEES FUOR RF EIUBSTE

TIMIHG

w-LEiada

1 SCALAR T [59a
L

[] #xx—a —F
WECTDR

Ape.dL LECTOR OCHH
; o GAMFLE g
plasee | ERFLF:
— COLMTER
=
I

Farlcdi 1E
wrseh d

Extarnal Clock

O 1
W1e 95

Equalizer Tap Attrs <17 ,3,t>

A Dataflow Tool:

Interactive Simulation

64 OAM Adaptive Eq

window

M Adapt Reset ‘22496

F+ W R

I
* &£ 4+ + F 4 3
o F P

Inputimage: inst 28 fm 0

Select Component Real -

Eile Edit View

T

Multipath Delay 1 |0

Multipath Delay2 [_[[|10
MultipathDelay 3 [_ | | |23
Multipath Delayd [[T |35
MultipathDelay5 [[| |56
Multipath Delay 6 [[| |82

Mobile Channel Frequency Response

i

Eye Persistence

100 100 -
I

Input Gain

A D i Oy —
-
Ly |
(3]

BIt Error Rate Analysis

Multisimulaticn Probe Resulls

| AXValue Blocks | FAXValse BER | RAXValus BLER 9 4 g § 7
3 |Hard 3 e 0.0451944 0., 430556 EbNo
1 | SoFt 3 72 0.0548611 0. 555356
2 | SsoFt 3 72 0.0122222 0,208333
WEERE 72 0. 164722 0, 944444 P el
3 | soft 3 7z | 0.000277776 00138880 detric=Salt, phase<2
4 |Hard 3 2 i, DOATS 0. 104044 etric=Sglt, phase<J
—1— - — — e
lay= HolPlsw=
ctType Y=F(O | Mew Trace far Each: Plot Points Whare: e i =

Control algorithm capture and analysis

« State Machine capture and simulation
— Links to HW and SW generation

A possible place for adapting SW development flows into the
system space

— SDL, UML
— Statecharts, state diagrams, message sequence charts

— Esterel

— Synchronous Reactive systems

Modelling and Design of SoCs and their
architectures

e Capturing SoC architecture and providing SoC configurators
« SOC model integration and developing verification models

— Especially HW/SW integration models

— “Golden models” for implementation verification

* Design Space Exploration

0C Conrigurators — exampie: Altera SOPC

ullder

<" Altera SOPC Builder

File

Systerm Module Miew Help

System Content=

More "nioz_cpu" Settings

Systemn Generation

-omponents = System Clock Freguency: (50.00 MHz
----- @ ARM-baszed Excalibur CPU
..... @ Ahera Mios 2.0 CPU — nios_cpu £ instruction_master (avalon)
_____ @ Interface to User Logic — nios_cpu § data_master (avalon)
--Bridges — arm_922t_stripe (AHB)
----- & Avalon Tri-State Bridge [G EUERE e 1 =) .
_____ O PLD Applications Nios-P — tri_state_bridge_0 (avalon_tristate)
""" @ AHB To Avalon Bridge ze hodule Mame Dezcription Bus Type Baze Enicl IRz
[=I-Communication v arm_922t_stripe | ARh-based Excal...
""" & SPI(3Wire Serial) v ahb_ethernet ... | AHD Ethernet MAC ZHB 0x00805000| Ux00G0SFEF | 19
""" @ LART (RS-232 serial po v nios_cpu Alters Mios 2.0 CPU avalon
""" <2 M165505 Enhanced LA v boot_monitor | on-chip Memory [, avalon 0x00804400| 0x00G047FF
""" <& CAM 2.0 Metwork Contro v = uarti O&RT (Re-232 zer... avalon 0x00804000| Ux00G0400F | 16
""" @ AHB Ethernet MAC v =0 uart? debug |UART (RE-232 zeri... avalon 0x00804020| Ux00G0405r | 17 |
""" @ Altera AHB LART v tri_state_bridg...| £valon Tri-state Or.. | avalon | avalan_..
[=I-Memory v ext_flash Flash hMemary awalon _fristate | 0x00B08000| OxO0GOBFFF
""" @ On-Chip Memory (RAM o v ext_ram SRAM [One or two .| avalon tristate | 0x00840000| OxO0G FFFFE
""" @ SDRAM Cortroller = ™0 timer1 Irterval timer avalon 0X00804040 | 0x0050405F | 18
""" @ SSRAM (Micron MTSELZ v pio_0 PIC (Paraliel 10 avalon 0x00804060| 00050406
..... @ Flash Memory v = pio_1 PIC (Paraliel 1) avalon 0x00804070| Ux<0050407F
----- & SRAM (one ar two IDTT
=-Other
..... . DM'&‘
..... & DI (Barallel i h
et e —
Add.. hawve Lip I Mave Do
Exit | = Hrey, | Mext = | Generate |

Third international conference
on application of concurrency
to system design

Source:

Altera we
site

www.altes
com

SoC Model Integration: SystemC

Platform design problem

a0
cGaraph

* ZDRAM Memory Intsrrup M FE34 M FE34

Zontrollar Interfaoe o ntrol I:l?-:--:-de- E||-:-m_1¢

L B

=FU ‘ ‘ ‘

['r'\'-'a.leHI:-D-B] [TIMER & n [TLE“' J
| 1

GFo 14 [RTZ] SYLTEN - smart
[l | COHTROL U ard

THE SRCHITECTURE FOR THE DIGITAL MYORLO™

Jesign Space Exploration - example

map_FAKIR_Diagrams.MPEG_VIPER_S1
YAPI Transactions - Write - Number of bytes per channel per frame

4,00E+06 6
8
3,50E+06 * —*—9
3.00E+06 A U
N / \ / T
15
2 50E+06 m\'JZ- m*/m [\\ / 17
@ 18
é‘z,ooaoe V Z 20
1,50E+06 T\ x T\ 22
, *— R x—x—x— 23
—x—xT T ' —¥— ‘_Y*_% 26
1,00E+06 \ \

g ﬂm‘ m * égx * M\ML R

5.00E+05 A

0,00E+00 -+

framelD x40

System Virtual Prototypes of SoCs for
ESW

 Hardware-dependent SW developers

— Need cycle and phase accuracy, bit-level precision
» Applications SW developers

— Need functional correctness and fast execution

||

L Platform Abstraction:

\pplications SW "
PP Link between the communities

Designers L]

L] —1
/};{s}% - - Designers
i s
,/‘\(li:/ f'V/'\
%\\@J‘U\
SR AU
Systems
Architects "

|

Designers

System Level Virtual Prototypes

» Develop HAS Models of your HW-SW platform
— Using, for example, SystemC
— SystemC 2.0 adds abstract communications modelling
— SystemC 3.0 will add abstract RTOS modeling
— Scheduling, communications services

» Use SystemC (2.0-3.0) as a simulation and analysis “Backbone”
for analysing the complete HW-SW embedded system

— An interoperable, Integration, Infrastructure

» Back-annotate the results INTO the SW developer’s
development environment via fast-execution, functional System
Virtual Prototypes

— SW modeling tools
— UML, SDL, ...
— SW Integrated Development Environments

What about Behavioural Synthesis?

* Not been a major success for commercial tools

— Quality of results uncompetitive with general RTL synthesis
« Used in specialised contexts

— E.g. dataflow algorithm to implementation

* May resurface via SW implementation optimisation to
processor+HW combination

— Emerging “co-processor synthesis”

.ompile to SW+HW: The Proceler example

Source: Procdler Web Site www.proceler.com

(Now Unfortunately Defunct)

From the defunct to the emergent:
Co-processor Synthesis - CriticalBlue

Application Code Compiled Object Code
L Ulsar cfficads

switable tasks
by profiling coda

T1A WV R
118 =Y

1 HIINIEE

— -ilﬂ{.-!ll' A

— | BT nee CriticalBlue Architecture derfred
f— et basad on charactensed
— _ library elemeants

CritizalBlua

ot Library
Compiler
Standard hardware
Standard soflware l implameaniation fow

development smironment

instruchion parallelism
automatically extracted
with spaculative

Back-End EXSCLLion

Dasign Teols F-

Source: CriticalBlueWeb Site http://www.criticalblue.com/technology3.htm

New SoC Architectures

A ‘sea’ of Flexible, configurable computational resources

» Using flexible, configurable, on-chip communications networks
* New architectures require new thinking

* This may be the real opportunity for system-level design

« But it may come with a real SW focus

« Current interest in compiling SW models to processor+accellerating HW
(often using reconfigurable logic)

* Obvious need here for Methods and Tools involving concurrency!

— Mapping computation to sea of resources
— Optimising configuration
— Mapping communications to network

— Making sure it all works together harmoniously

e Software Washing Machine

Software Washing Machine [catthoor, IMEC]

Target independent source to source transformations
for data-intensive applications save power!

IN: Dirty C++ software IP’s + scenario

OUT: Cleaned Concurrent C++ tasks OUT (SYSTEMC)

Platform specific compiler

— © H.De Man/IMEC DATEO2

letworks of Adaptive Computing

Networked Adaptive Computing
Machines

Subnetworks for compute intense concurrent tasks (brain zones)

£ (]
DynRCP T

i S |

o

Program *

Data Packet switching, low swing MD network [5A]
—— ©@ H.De Man/IMEC DATED2 23

sjesayduad

The Mapping Problem

Challenge#2: The devil is in the software

Scenari|o {Sw IP legacy}

Sw Washind machine

Virtual Hw/Sw machine model

RTOS Hw-Sw // Task Mapping
(Run-time) reconfig/progr

= oA
Dynamic Power managemegt/v Profiling

Conf. & ?’rogram Memory Map_..~

& i
L
o
.

i : i i q—
|l Rl A Protocols
—— © H.De Man/IMEC DATE02

 HwlIP

Conclusion

e Is this just a SW problem?
» Will systems design = SW design and implementation?

* Why should a system designer care about HW at all?

— Except inasmuch that it gives him or her choices about
Implementation tradeoffs

— This is a job for a compiler with optimisation options
* What are the implications for the research community?

— Can advanced tools and methods overcome designers fear of
concurrency?

— Can we also unify the HW and SW design community into a new
one: system designers who, armed with the right tools, boldly,
reliably and quickly can implement highly concurrent applications on
networks of configurable processors?

